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Vibration test shakers have a limitation on the displacement range they can base drive a test article.
The full range of motion in the plus and minus directions is called double amplitude and typically varies
from 0.5” to 2.0” depending on the test equipment/setup. As we know, harmonic vibration displacement is
inversely proportional to excitation frequency squared. That is why we observe large displacement in the
lower frequencies (5Hz ≈ 20Hz) and displacement is almost unnoticeable to the naked eye in the higher
frequencies (> 1000Hz).

Harmonic Vibrations

In harmonic vibration, shaker double amplitude displacement D.A. at a given frequency ω = 2πf and
acceleration is calculated as:

ẍ (t) = A cos (ωt) → x (t) =
A

ω2
cos(ω t)

D.A. =
2A

ω2
=

2A

4π2f2

In the Imperial Unit System, double amplitude becomes:

D.A. =
19.56A

f2
(1)

or alternatively:

A = 0.05112D.A.f2 (2)

where A is acceleration in g’s, D.A. is in inches, and f is in Hz.

Example sine ramp-ups for different constant double amplitude limits are shown in Figure 1. This means
that for a shaker setup with given D.A. limit, ramp-up slope cannot be above lines shown. Note that a
constant D.A ramp up has slope of 12.04dB/oct.
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Figure 1: Sine Ramp Ups Corresponding to Different Constant Double Amplitude Limits

Another important note is that sine FRF plots should always be in a log-log system as that is how test
controllers are setup to work. Plotting sine FRF data in a linear system could lead to incorrect conclusions
on the sloped portions of the plot. We will discuss that in a separate article.

Random Vibrations

In most space applications, random vibration does not drive the shaker double amplitude requirement.
However, we still need to know what is the maximum expected double amplitude displacement for a given
random vibration profile.

Random vibration is specified in acceleration spectral density in g2/Hz units vs frequency typically
ranging from 20Hz to 2,000Hz. In ergodic random vibrations, maximum acceleration in the time domain
is unknown but it is often assumed to be three times the rms (root mean square) acceleration. Since time
average of a random acceleration is zero, the rms acceleration is the same as 1− σ standard deviation.

As we know, rms acceleration is calculated as the square root of the area under acceleration spectral
density:
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grms =

√∫ f2

f1

W (f) df

Slope of a log-log acceleration spectral density line from (f1,W1) to (f1,W2) in dB/oct (decibels per octaves)
is defined as (note that 10 log(2) ≈ 3.0):

m =
3. log(W2/W1)

log(f2/f1)

Given the slope m, equation of a spectral density line from (f1,W1) to (f,W ) on a log-log scale can be
written as:

W (f) = W1.

(
f

f1

)m
3

On the other hand, we know that displacement spectral density D in in2

Hz is written in terms of acceleration
spectral density as follows (g = 386.1in2/s):

D (f) =
g2W (f)

(2πf)
4

This means that root mean displacement for one linear segment becomes:

drms =

√∫ f2

f1

Ddf =

√∫ f2

f1

g2.W (f)

(2.π.f)
4

As we previously discussed, maximum random vibration response is assumed to be the 3−σ value and since
double amplitude accounts for the max total displacement in positive and negative directions, we will have:

D.A. = 3× 2× drms

Combining the above equations and after some algebraic simplifications we get the double amplitude formula
for an N-segmented spectral density (f1,W1), (f2,W2), . . . , (fN ,WN ) lines:

D.A. = 6.

√√√√i=N−1∑
i=1

1

(2.π)
4 .

3Wi−1

(mi − 9) .f3
i−1

[ (
fi

fi−1

)mi
3 −3

− 1

]
(3)

In the special case where for a line segment we have m = 9, we use L’Hôpital’s rule to write:

D.A.i
2 =

1

(2.π)
4

3Wi−1

f3
i−1

lim
mi→9

[ (
fi

fi−1

)mi
3 −3

− 1

]
(mi − 9)

=
1

(2.π)
4

3Wi−1

f3
i−1

lim
mi→9

(
fi

fi−1

)mi
3 −3

ln

(
fi

fi−1

)
=

1

(2.π)
4

3Wi−1

f3
i−1

ln

(
fi

fi−1

)
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Numerical Exmaple

Table 1 shows an example random vibration requirement for a spaceflight hardware along with its rms
acceleration and displacements.

Table 1: Example Random Vibration Requirements.

f(Hz) W (g2/Hz) m(dB/oct) D(in2/Hz)

20 0.010 - 5.98e-6

50 0.100 7.54 1.53e-6

100 0.100 0.00 9.56e-8

150 0.200 5.13 3.78e-8

500 0.200 0.00 3.06e-10

2000 0.009 -6.71 5.38e-14

rms 12.25grms 0.0108inrms

For this example, double amplitude becomes:

D.A. = 6× 0.0108in = 0.0646in

Figure 2 shows an overly of acceleration and displacement spectral densities. Note how quickly D diminishes
in the higher frequencies (inversely proportional to f4). This relationship explains why structures do not see
high stresses in higher frequencies, e.g., > 300Hz. We will discuss this in more detail in another article.

Figure 2: Example Random Vibration Requirement
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