1 Find an equation of the common chord of two intersected circles.

Problem 1: Without finding the intersection point of the circles, create an equation for their common chord.

$$
\begin{align*}
& (x-1)^{2}+(y+2)^{2}-18=0 \tag{1}\\
& (x+3)^{2}+(y-1)^{2}-36=0
\end{align*}
$$

Solution: All quadrics (including the degenerate general chord whose equations need to be found) passing through the points P and Q belong to the bundle:

$$
\begin{equation*}
\lambda F+\mu G=0 \tag{2}
\end{equation*}
$$

Let us take advantage of the fact that the general chord is a degenerate quadric, which means its invariants are equal to zero: $I_{2}=I_{3}=0$. Substituting Eqs. (1) into Eq. (2), we obtain

$$
\begin{gather*}
\lambda\left((x-1)^{2}+(y+2)^{2}-18\right)+\mu\left((x+3)^{2}+(y-1)^{2}-36\right)=0 . \tag{3}\\
(\lambda+\mu) x^{2}+(\lambda+\mu) y^{2}+(-2 \lambda+6 \mu) x+(4 \lambda-2 \mu) y-13 \lambda-26 \mu=0 . \tag{4}\\
I_{2}=\left|\begin{array}{cc}
\lambda+\mu & 0 \\
0 & \lambda+\mu
\end{array}\right|=0 \leftrightarrow(\lambda+\mu)^{2}=0 \leftrightarrow \lambda=-\mu \tag{5}
\end{gather*}
$$

Let's choose $\lambda=1$, then we have $\mu=-1$. Substituting these values λ and μ into Eq. (4), we obtain the equation for common chord:

$$
\begin{equation*}
8 x-6 y-13=0 . \tag{6}
\end{equation*}
$$

