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1 Solution of a boundary value problem in double trigonometric series.

Problem 1: Determine the deflection in the center of a rectangular plate hinged at the edges loaded by
the load uniformly distributed over the surface of the plate.

Figure 1: A plate loaded with a load evenly distributed over a rectangular area.

Solution: The solution to the two-dimensional problem for a heterogeneous linear partial differential
equation can be found by separating variables using double trigonometric series. In this case, as well as
when using single series, the differential operators of the equation and boundary conditions should be even
multiplicity. To study the use of double trigonometric series is convenient to consider using the example
of solving the problem of bending a thin plate of rectangular shape (Navier’s solution). It is required
to determine the deflections w(x, y) of a thin plate shown in Figure 2, the bending of which under an
arbitrary load q(x, y) is described by the equation

∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+

∂4w

∂y4
=

q(x, y)

D
. (1)
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Figure 2: A rectangular plate under the action of an arbitrary load.

The boundary conditions for the plate with hinged support of all edges have the following form

w
∣∣∣x=0
x=a

= 0,
∂2w

∂x2

∣∣∣x=0
x=a

= 0, w

∣∣∣∣y=0
y=b

= 0,
∂2w

∂x2

∣∣∣∣y=0
y=b

= 0. (2)

The solution to the boundary value problem, Eqs. (1) and (2), is represented as a double trigonometric
series

w(x, y) =

∞∑
m=1

∞∑
n=1

Amn sin
mπx

a
sin

nπy

b
. (3)

This solution satisfies boundary conditions, Eq. (2). It satisfies Eq. (1) at some values of constants
Amn which are defined by substituting Eq. (3) into Eq. (1):

∞∑
m=1

∞∑
n=1

Amnπ
4

(
m2

a2
+

n2

b2

)2

sin
mπx

a
sin

nπy

b
=

q(x, y)

D
. (4)

Thus, the left side of the original equation (1) is represents the Fourier series along the sinus functions.
Similarly, one can represent the right part, that is, the load function

q(x, y) =

∞∑
m=1

∞∑
n=1

Cmn sin
mπx

a
sin

nπy

b
. (5)

This expression is substituted into Eq. (4)

∞∑
m=1

∞∑
n=1

Amnπ
4

(
m2

a2
+

n2

b2

)2

sin
mπx

a
sin

nπy

b
=

1

D

∞∑
m=1

∞∑
n=1

Cmn sin
mπx

a
sin

nπy

b
. (6)
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Equating the coefficients with the same trigonometric functions in the right and left parts of the obtained
equality, we get

Cmn = Dπ4Amn

(
m2

a2
+

n2

b2

)2

. (7)

On the other hand, the formula for determining the Fourier series coefficients for q(x, y) is as follows

Cmn =
4

ab

∫ x2

x1

∫ y2

y1

q(x, y) sin
mπx

a
sin

nπy

b
dxdy, (8)

where for the integral can be given the designation

Kmn =
4

ab

∫ x2

x1

∫ y2

y1

q(x, y) sin
mπx

a
sin

nπy

b
dxdy. (9)

Then, we obtain

Cmn =
4

ab
Kmn. (10)

With this expression in mind, for Cmn, a formula for determining the values of constants Amn can be
derived from Eq. (8)

Amn =
4Kmn

abDπ4
(
m2

a2
+ n2

b2

)2 , (11)

and The sought solution of Eq. (3) takes the form

w(x, y) =
4

abDπ4

∞∑
m=1

∞∑
n=1

Kmn(
m2

a2
+ n2

b2

)2 sin
mπx

a
sin

nπy

b
. (12)

After determining the deflections w, the bending and torquing moments and the transverse forces in
the plate are found according to the known equations of the thin plate theory. The double integral is
relatively easy to calculate for a particularly given load. For example, for a load evenly distributed over
some rectangular region with sides parallel to the x and y axes we have

q = const, x1 = c, x2 = c+∆x, y1 = d, y2 = d+∆y, (13)

and from Eq. (9) we have

Kmn = q

∫ c+∆x

c
sin

mπx

a
dx

∫ d+∆y

d
sin

nπy

b
dy =

qab

mnπ2
cos

mπx

a

∣∣∣∣c+∆x

c

cos
nπy

b

∣∣∣∣d+∆y

d

(14)

After substituting the limits of integration and trigonometric transformations, we get

Kmn =
4qab

mnπ2

(
sin

mπ∆x

2a
sin

mπ

a

(
c+

∆x

2

))(
sin

nπ∆y

2b
sin

nπ

b

(
d+

∆y

2

))
. (15)

For the given problem we have

c = d = 0, ∆x = a, ∆y = b. (16)

Using Eq. (15), we obtain

Kmn =
4qab

mnπ2
sin

mπ

2
sin

nπ

2
. (17)
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We get that

sin
mπ

2
sin

nπ

2
=

{
0 if m or n is even,

1 if m and n are odd.
(18)

Substituting Kmn with m,n = 1, 3, . . . into Eq. (12), we obtain

w(x, y) =
16qa4

Dπ6

∞∑
m=1,3,...

∞∑
n=1,3,...

sin mπx
a sin nπy

b

mn
(
m2 + n2 a2

b2

)2 . (19)

In order to get a reasonably accurate result, only one member of the double series can be stored in this
formula (m = n = 1). In this case, at a = b in the center of the plate (x = a/2, y = b/2), the deflection is

wmax =
4qa4

Dπ6
. (20)

Saving two terms of the series (m,n = 1, 3) adjusts this result not exceeding 3%.
■
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