Problem 1: Determine the stress of the steel and copper parts of the stepped rod when the temperature rises by $\Delta T = 30^{\circ}\text{C}$. Dimensions are $l_{st} = 1$ m, $l_{cu} = 1.4$ m, gap $\delta = 0.0003$ m, $A_{st} = 0.001$ m², $A_{cu} = 0.002 \text{ m}^2$; moduli of elasticity are $E_{st} = 2 \cdot 10^6 \text{ kgf/cm}^2 = 2 \cdot 10^{10} \text{ kgf/m}^2 = 196.133 \text{ GPa}$, and $E_{cu} = 1 \cdot 10^6$ kgf/cm² = 1 $\cdot 10^{10}$ kgf/m² = 98.0665 GPa. Thermal expansion coefficients are $\alpha_{st} = 12.5 \cdot 10^{-6}$ $1/C^{\circ}$ and $\alpha_{cu} = 16.5 \cdot 10^{-6}$ $1/C^{\circ}$.

Figure 1: Stepped rod.

and elements are deprived of free deformation, then when the
orces, and the corresponding thermal stresses arise. Si
 ring the heating or cooling of statically indeterminate st
 gn is a rod fixed on rigid, unyielding supp Solution: If structural elements are deprived of free deformation, then when the temperature changes, the so-called thermal forces, and the corresponding thermal stresses arise. Such a phenomenon, for example, is observed during the heating or cooling of statically indeterminate structures. The simplest example of such a design is a rod fixed on rigid, unyielding supports. The stresses arising in the cross sections of a homogeneous rod fixed at the ends when the temperature changes are determined by the formula

$$
\sigma_t = \pm E \alpha \Delta T, \tag{1}
$$

where α is the thermal expansion coefficients, ΔT is the change in temperature against the initial value, E is the modulus of elasticity. Stresses are positive (tensile) if the temperature drops and negative (compressive) if the temperatures rise. If there is a gap between one of the ends of the rod and a rigid support, the thermal stress is defined by

$$
\sigma_t = -E\left(\alpha \Delta T - \frac{\delta}{l}\right),\tag{2}
$$

where l the rod length.

In the case of a stepped rod with pinched ends, the force arising from a temperature change is determined by

$$
N_t = \pm \frac{\Delta T \sum_{i=1}^n \alpha_i l_i}{\sum_{i=1}^n \frac{l_i}{E_i A_i}},\tag{3}
$$

and with the presence of a gap the force is given by

$$
N_t = -\frac{\Delta T \sum_{i=1}^n \alpha_i l_i - \delta}{\sum_{1}^n \frac{l_i}{E_i A_i}},\tag{4}
$$

where α_i is the thermal expansion coefficient of the material of step i; l_i is the length of step i; A_i is the cross-sectional area of step i; E_i is the modulus of elasticity of step i. The temperature stress in the cross section of any step is equal to

$$
\sigma_i = \frac{N_i}{A_i}.\tag{5}
$$

For the rod with two steps we have

$$
N_t = -\frac{\Delta T (\alpha_{st} \cdot l_{st} + \alpha_{cu} \cdot l_{cu}) - \delta}{\frac{l_{st}}{E_{st} A_{st}} + \frac{l_{cu}}{E_{cu} A_{cu}}} = -\frac{30(12.5 \cdot 10^{-6} \cdot 1.0 + 16.5 \cdot 10^{-6} \cdot 1.40) - 0.0003}{\frac{1.0}{2 \cdot 10^{10} \cdot 0.001} + \frac{1.4}{1 \cdot 10^{10} \cdot 0.002}} = -6400 \text{ kgf},
$$
\n(6)

The stresses in the cross sections are equal to

1. in steel part:

$$
\sigma_{st} = \frac{N_t}{A_{st}} = -\frac{6400}{0.001} = -6400000 \text{ kgf/m}^2 = -62.76256 \text{ MPa},\tag{7}
$$

2. in copper part:

$$
\sigma_{cu} = \frac{N_t}{A_{cu}} = -\frac{6400}{0.002} = -3200000 \text{ kgf/m}^2 = -31.38128 \text{ MPa.}
$$
\n(8)

■

Jacimir Gantovich