Problem 1: A thin-walled cylindrical pressure vessel of the diameter $d=250 \mathrm{~mm}$ and the wall thickness $t=5 \mathrm{~mm}$ is rigidly attached to a wall, forming a cantilever as shown in Figure 1. The following loads are applied: internal pressure $p=1.2 \mathrm{MPa}$, torque $T=3 \mathrm{kN} \cdot \mathrm{m}$, and the direct force $P=20 \mathrm{kN}$. Determine the maximum shear stresses and the associated normal stresses at point A of the cylindrical wall. Show the results on a properly oriented element.

Figure 1: Thin-walled vessel.

Solution: The internal force resultants on a transverse section through point A are found from the equilibrium conditions of the free-body diagram shown in Figure 2. They are $V=20 \mathrm{kN}, M=P \cdot b=$ $20 \cdot 0.4=8 \mathrm{kN} \cdot \mathrm{m}$, and $T=3 \mathrm{kN} \cdot \mathrm{m}$.

Figure 2: Free-body diagram of a segment.

In Figure 3, the combined axial, tangential, and shear stresses are shown on small element at point A. The stresses are

$$
\begin{gather*}
\sigma_{b}=\frac{M r}{I_{x}}=\frac{M r}{\pi r^{3} t}=\frac{M}{\pi r^{2} t}=\frac{8 \cdot 10^{3}}{\pi(0.25 / 2)^{2}(0.005)}=32.6 \mathrm{MPa} \tag{1}\\
\tau_{t}=-\frac{T r}{J_{c}}=-\frac{T r}{2 \pi r^{3} t}=-\frac{T}{2 \pi r^{2} t}=\frac{3 \cdot 10^{3}}{2 \pi(0.25 / 2)^{2}(0.005)}=-6.112 \mathrm{MPa} \tag{2}\\
\sigma_{a}=\frac{p r}{2 t}=\frac{1.2 \cdot 10^{6}(0.25 / 2)}{2 \pi(0.005)}=15 \mathrm{MPa} \tag{3}\\
\sigma_{\theta}=2 \sigma_{a}=2 \cdot 15=30 \mathrm{MPa} \tag{4}
\end{gather*}
$$

Figure 3: Stresses on a the element at point A (view from top).
Thus, we have $\sigma_{x}=\sigma_{a}+\sigma_{b}=15+32.6=47.6 \mathrm{MPa}, \sigma_{y}=\sigma_{\theta}=30 \mathrm{MPa}, \tau_{x y}=\tau_{t}=-6.112 \mathrm{MPa}$. Note that for element A, we have $Q=0$. Hence, the direct shear stress $\tau_{d}=\tau_{x} z=V Q /(I b)=0$. The maximum shear stress are given by

$$
\begin{equation*}
\tau_{\max }= \pm \sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x y}^{2}}= \pm \sqrt{\left(\frac{47.6-30}{2}\right)^{2}+(-6.112)^{2}=} \pm 10.71 \mathrm{MPa} \tag{5}
\end{equation*}
$$

Normal stress acting on the planes of maximum shear stress is given by

$$
\begin{equation*}
\sigma^{\prime}=\sigma_{\text {ave }}=\frac{1}{2}\left(\sigma_{x}+\sigma_{y}\right)=\frac{1}{2}(47.6+30)=38.8 \mathrm{MPa} \tag{6}
\end{equation*}
$$

To locate the maximum shear planes, we use

$$
\begin{equation*}
\tan 2 \theta_{s}=-\frac{\sigma_{x}-\sigma_{y}}{2 \tau_{x y}}, \tag{7}
\end{equation*}
$$

from which we can derive

$$
\begin{equation*}
\theta_{s}=\frac{1}{2} \tan ^{-1}\left[-\frac{\sigma_{x}-\sigma_{y}}{2 \tau_{x y}}\right]=\frac{1}{2} \tan ^{-1}\left[-\frac{47.6-30}{2(-6.112)}\right]=27.6^{\circ} \text { and } 117.6^{\circ} \tag{8}
\end{equation*}
$$

Now we obtain $\tau_{x^{\prime} y^{\prime}}$ using the transformation equation

$$
\begin{align*}
\tau_{x^{\prime} y^{\prime}} & =-\frac{1}{2}\left(\sigma_{x}-\sigma_{y}\right) \sin 2 \theta+\tau_{x y} \cos 2 \theta= \\
& =-\frac{1}{2}(47.6-30) \sin \left(55.2^{\circ}\right)+(-6.112) \cos \left(55.2^{\circ}\right)=-10.71 \mathrm{MPa} \tag{9}
\end{align*}
$$

The stresses are shown in their proper directions in Figure 4.

Figure 4: Stresses on a the properly oriented element at point A (view from top).

