Linkedin Group "Simulia iSight Optimization"
Example \#1 Minimization of Rosenbrock function using DownhillSimplex and Calculator component.

The optimization problem is formulated as follows
$\operatorname{Min} f(x, y)=(1-x)^{2}+100 \times\left(y-x^{2}\right)^{2}$
s.t. $\quad x \in[-3,3]$,
$y \in[-3,3]$.

Solution:

Next we create simple iSight flow with only 2 components: Optimization and Calculator.

As an optimizer we select DownhillSimplex, and set Max Iterations $=50$.

Set lower and upper bounds and initial values for the design variables x and y .

Define the problem as minimization of the objective function $f(x, y)$

In the Calculator component we define the Rosenbrock function $f=f(x, y)$

Enter one or more assignment statements: $y=x+1$; $a[i]=b[j]$ * 50.0

$$
\mathrm{f}=(1-\mathrm{x}) * * 2+100 *(\mathrm{y}-\mathrm{x} * * 2) * * 2
$$

History plots of design variables x and y, and objective function f.

The result of iSight optimization

Optimization Results

Started on Wed Dec 20 11:14:58 PST 2017
Optimization Technique: DownhillSimplex
Failed Run Objective Value $=1.0 \mathrm{E} 30$
Failed Run Penalty Value $=1.0 \mathrm{E} 30$
Initial Simplex Size $\quad=0.1$
Max Failed Runs $=5$
Max Iterations $\quad=50$
Simplex Count $=1$

Starting design point:

$x=2.0[-3.0<x<3.0]$
$y=2.0[-3.0<x<3.0]$
Completed on Wed Dec 20 11:14:59 PST 2017
Total design evaluations: $\quad 96$
Number of feasible designs: 96

Optimum design point:

Run \#	$=94$
Objective	$=2.8681931300344363 \mathrm{E}-7$
Penalty	$=0.0$
ObjectiveAndPenalty	$=2.8681931300344363 \mathrm{E}-7$
x	$=1.0002341568470001$
y	$=1.0005165338516235$
f	$=2.8681931300344363 \mathrm{E}-7$

