import numpy as np
import matplotlib.pyplot as plt
class IV_Problem:
    """
    Initial value problem (IVP) class
    """
    def __init__(self, rhs, y0, interval, name='IVP'):
        """
        rhs 'right hand side' function of the ordinary differential
        equation f(t,y)
        y0 array with initial values
        interval start and end value of the interval of independent
        variables often initial and end time
        name descriptive name of the problem
        """
        self.rhs = rhs
        self.y0 = y0
        self.t0, self.tend = interval
        self.name = name

def rhs(t,y):
    g = 9.81
    l = 1.
    yprime = np.array([y[1], g / l * np.sin(y[0])])
    return yprime

pendulum = IV_Problem(rhs,np.array([np.pi / 2, 0.]),[0., 20.],'mathem. pendulum')

class IVPsolver:
    """
    IVP solver class for explicit one-step discretization methods
    with constant step size
    """
    def __init__(self, problem, discretization, stepsize):
        self.problem = problem
        self.discretization = discretization
        self.stepsize = stepsize

    def one_stepper(self):
        yield self.problem.t0, self.problem.y0
        ys = self.problem.y0
        ts = self.problem.t0
        while ts <= self.problem.tend:
            ts, ys = self.discretization(self.problem.rhs, ts, ys,
                                         self.stepsize)
            yield ts, ys

    def solve(self):
        return list(self.one_stepper())

def expliciteuler(rhs, ts, ys, h):
    return ts + h, ys + h * rhs(ts, ys)

def rungekutta4(rhs, ts, ys, h):
    k1 = h * rhs(ts, ys)
    k2 = h * rhs(ts + h/2., ys + k1/2.)
    k3 = h * rhs(ts + h/2., ys + k2/2.)
    k4 = h * rhs(ts + h, ys + k3)
    return ts + h, ys + (k1 + 2*k2 + 2*k3 + k4)/6.

pendulum_Euler = IVPsolver(pendulum, expliciteuler, 0.001)
pendulum_RK4 = IVPsolver(pendulum, rungekutta4, 0.001)
sol_Euler = pendulum_Euler.solve()
sol_RK4 = pendulum_RK4.solve()
tEuler, yEuler = zip(*sol_Euler)
tRK4, yRK4 = zip(*sol_RK4)
plt.subplot(1,2,1)
plt.plot(tEuler,yEuler)
plt.title('Pendulum result with Explicit Euler')
plt.xlabel('Time')
plt.ylabel('Angle and angular velocity')
plt.subplot(1,2,2)
plt.plot(tRK4,abs(np.array(yRK4)-np.array(yEuler)))
plt.title('Difference between methods RK4 and Euler')
plt.xlabel('Time')
plt.ylabel('Angle and angular velocity')
plt.savefig('ex223.png', dpi=72)
plt.show()

Discover more from Tips and Hints for Aerospace Engineers

Subscribe now to keep reading and get access to the full archive.

Continue reading