#149 Optimization in python
import os import numpy as np from scipy.optimize import minimize os.chdir(r'D:\projects\wordpress\ex149') os.getcwd() def obj(x): return (1-x[0])**2 + 100*(x[1]-x[0]**2)**2 def con(x): g=np.zeros(2) g[0]=1-x[0]**2-x[1]**2 g[1]=5-x[0]-3*x[1] return g x0=[5.0,5.0] constraints = {'type': 'ineq','fun': con} options={'disp':True} res = minimize(obj,x0,constraints=constraints,options=options) print('x =',res.x) print('f =',res.fun) print(res.success)
Output:
Optimization terminated successfully (Exit mode 0) Current function value: 0.04567481620594842 Iterations: 21 Function evaluations: 73 Gradient evaluations: 21 x = [0.78641211 0.61770218] f = 0.04567481620594842 True
Recent Comments