1 | import os |
2 | import matplotlib.pyplot as plt |
3 | import numpy as np |
4 | import neurolab as nl |
5 | os.chdir(r 'D:\projects\wordpress\ex60' ) |
6 | os.getcwd() |
7 | #create train sets |
8 | x = np.linspace( - 10 , 10 , 60 ) |
9 | y = np.cos(x) * 0.9 |
10 | size = len (x) |
11 | x_train = x.reshape(size, 1 ) |
12 | y_train = y.reshape(size, 1 ) |
13 | #create network with 4 layers and randomly initiate |
14 | d = [[ 1 , 1 ],[ 45 , 1 ],[ 45 , 45 , 1 ],[ 45 , 45 , 45 , 1 ]] |
15 | for i in range ( 4 ): |
16 | net = nl.net.newff([[ - 10 , 10 ]],d[i]) |
17 | train_net = nl.train.train_gd(net,x_train,y_train,epochs = 1000 ,show = 100 ) |
18 | outp = net.sim(x_train) |
19 | plt.subplot( 2 , 1 , 1 ) |
20 | plt.grid( True ) |
21 | plt.plot(train_net) |
22 | plt.title( 'Hidden Layers: ' + str (i)) |
23 | plt.xlabel( 'Epochs' ) |
24 | plt.ylabel( 'quadratic error' ) |
25 | x2 = np.linspace( - 10 , 10 , 150 ) |
26 | y2 = net.sim(x2.reshape(x2.size, 1 )).reshape(x2.size) |
27 | y3 = outp.reshape(size) |
28 | plt.subplot( 2 , 1 , 2 ) |
29 | plt.grid( True ) |
30 | plt.plot(x2,y2, '-' ,x,y, '.' ,x,y3, 'p' ) |
31 | plt.legend([ 'y predicted' , 'y actual' ]) |
32 | plt.savefig( "example60_" + str (i) + '.png' , dpi = 100 ) |
33 | plt.show() |
34 | plt.close() |
35 | |
Recent Comments