1 | import os |
2 | import numpy as np |
3 | import matplotlib.pyplot as plt |
4 | from scipy.optimize import curve_fit |
5 | os.chdir(r 'D:\data\scripts\wordpress\ex55' ) |
6 | os.getcwd() |
7 | x0,A,gamma = 12 , 3 , 5 |
8 | n = 200 |
9 | x = np.linspace( 1 , 20 ,n) |
10 | yexact = A * gamma * * 2 / (gamma * * 2 + (x - x0) * * 2 ) |
11 | #Learning Scientific Programming with Python |
12 | # Add some noise with a sigma of 0.5 apart from a particularly noisy region |
13 | # near x0 where sigma is 3 |
14 | sigma = np.ones(n) * 0.5 |
15 | sigma[np. abs (x - x0 + 1 )< 1 ] = 3 |
16 | noise = np.random.randn(n) * sigma |
17 | y = yexact + noise |
18 |
19 | def f(x,x0,A,gamma): |
20 | #The Lorentzian entered at x0 with amplitude A and HWHM gamma |
21 | return A * gamma * * 2 / (gamma * * 2 + (x - x0) * * 2 ) |
22 |
23 | def rms(y,yfit): |
24 | return np.sqrt(np. sum ((y - yfit) * * 2 )) |
25 |
26 | # Unweighted fit |
27 | p0 = 10 , 4 , 2 |
28 | popt,pcov = curve_fit(f,x,y,p0) |
29 | yfit = f(x, * popt) |
30 | print ( 'Unweighted fit parameters:' ,popt) |
31 | print ( 'Covarian cematrix:' ) |
32 | print (pcov) |
33 | print ( 'rms error in fit:' ,rms(yexact,yfit)) |
34 | print () |
35 | # Weighted fit |
36 | popt2,pcov2 = curve_fit(f,x,y,p0,sigma = sigma,absolute_sigma = True ) |
37 | yfit2 = f(x, * popt2) |
38 | print ( 'Weighted fit parameters:' ,popt2) |
39 | print ( 'Covariancematrix:' ) |
40 | print (pcov2) |
41 | print ( 'rms error in fit:' ,rms(yexact,yfit2)) |
42 | plt.plot(x,yexact,label = 'Exact' ) |
43 | plt.plot(x,y, 'o' ,label = 'Noisy data' ) |
44 | plt.plot(x,yfit,label = 'Unweighted fit' ) |
45 | plt.plot(x,yfit2,label = 'Weighted fit' ) |
46 | plt.ylim( - 1 , 4 ) |
47 | plt.legend(loc = 'lower center' ) |
48 |
49 | plt.tight_layout() |
50 | plt.savefig( "example55.png" , dpi = 100 ) |
51 | plt.show() |
52 | plt.close() |
Recent Comments