1import os
2import numpy as np
3import matplotlib.pyplot as plt
4from scipy.optimize import curve_fit
5os.chdir(r'D:\data\scripts\wordpress\ex55')
6os.getcwd()
7x0,A,gamma=12,3,5
8n=200
9x=np.linspace(1,20,n)
10yexact=A*gamma**2/(gamma**2+(x-x0)**2)
11#Learning Scientific Programming with Python
12# Add some noise with a sigma of 0.5 apart from a particularly noisy region
13# near x0 where sigma is 3
14sigma=np.ones(n)*0.5
15sigma[np.abs(x-x0+1)<1]=3
16noise=np.random.randn(n)*sigma
17y=yexact+noise
18 
19def f(x,x0,A,gamma):
20    #The Lorentzian entered at x0 with amplitude A and HWHM gamma
21    return A*gamma**2/(gamma**2+(x-x0)**2)
22 
23def rms(y,yfit):
24    return np.sqrt(np.sum((y-yfit)**2))
25 
26# Unweighted fit
27p0=10,4,2
28popt,pcov=curve_fit(f,x,y,p0)
29yfit=f(x,*popt)
30print('Unweighted fit parameters:',popt)
31print('Covarian cematrix:')
32print(pcov)
33print('rms error in fit:',rms(yexact,yfit))
34print()
35# Weighted fit
36popt2,pcov2=curve_fit(f,x,y,p0,sigma=sigma,absolute_sigma=True)
37yfit2=f(x,*popt2)
38print('Weighted fit parameters:',popt2)
39print('Covariancematrix:')
40print(pcov2)
41print('rms error in fit:',rms(yexact,yfit2))
42plt.plot(x,yexact,label='Exact')
43plt.plot(x,y,'o',label='Noisy data')
44plt.plot(x,yfit,label='Unweighted fit')
45plt.plot(x,yfit2,label='Weighted fit')
46plt.ylim(-1,4)
47plt.legend(loc='lower center')
48 
49plt.tight_layout()
50plt.savefig("example55.png", dpi=100)
51plt.show()
52plt.close()



example55

Discover more from Tips and Hints for Aerospace Engineers

Subscribe now to keep reading and get access to the full archive.

Continue reading