import os import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn import metrics from sklearn import cluster os.chdir(r'D:\projects\wordpress\ex49') os.getcwd() iris = datasets.load_iris() X, y = iris.data, iris.target np.random.seed(123) n_clusters = 3 c = cluster.KMeans(n_clusters=n_clusters) c.fit(X) y_pred = c.predict(X) print(y_pred[::8]) print(y[::8]) idx_0, idx_1, idx_2 = (np.where(y_pred == n) for n in range(3)) y_pred[idx_0], y_pred[idx_1], y_pred[idx_2] = 2, 0, 1 print(y_pred[::8]) print(metrics.confusion_matrix(y, y_pred)) N = X.shape[1] fig, axes = plt.subplots(N, N, figsize=(12, 12), sharex=True, sharey=True) colors = ["coral", "blue", "green"] markers = ["^", "v", "o"] for m in range(N): for n in range(N): for p in range(n_clusters): mask = y_pred == p axes[m, n].scatter(X[:, m][mask], X[:, n][mask], marker=markers[p], s=30, color=colors[p], alpha=0.25) [crayon-6790f773574f6589524981/] fig.tight_layout() plt.savefig("example49.png", dpi=100) plt.show() plt.close()
Recent Comments